264 research outputs found

    Treatment of a Landfill Leachate Containing Compounds of Pharmaceutical Origin

    Get PDF
    Abstract Paper reports the results of landfill leachate treatment with membrane bioreactor, nanofiltration and ozonation. Investigated leachate encompasses a number of specific compounds of pharmaceutical origin, including a suite of by-products deriving from the production of vitamin C and propyphenazone. Low biodegradability was observed in MBR (16 %) for propyphenazone, while the removal of intermediates from the vitamin C-synthesis was moderate, reaching 30 % for diacetone sorbose (DAS) and 69 % for diacetone alpha-keto-gulonic acid (DAG). Ozonation almost completely removed propyphenazone but failed to significantly oxidise intermediates from the vitamin C-synthesis. Nanofiltration of the leachate succeeded to remove 99 % of DAG and 79% of propyphenazone which made it the most efficient among techniques used

    Mimetics of ADP-ribosylated histidine through copper(I)-catalyzed click chemistry

    Get PDF
    A convergent synthesis provided nearly perfect tau-ADP-ribosylated histidine isosteres (His*-tau-ADPr) via a copper(I)-catalyzed cycloaddition between an azido-ADP-ribosyl analogue and an oligopeptide carrying a propargyl glycine. Both alpha- and beta-configured azido-ADP-ribosyl analogues have been synthesized. The former required participation of the C-2 ester functionality during glycosylation, while the latter was obtained in high stereoselectivity from an imidate donor with a nonparticipating para-methoxy benzyl ether. Four His*-tau-ADPr peptides were screened against a library of human ADP-ribosyl hydrolases.Bio-organic Synthesi

    Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal

    Get PDF
    Poly(ADP-ribosyl)ation (PAR) is a versatile and complex posttranslational modification composed of repeating units of ADP-ribose arranged into linear or branched polymers. This scaffold is linked to the regulation of many of cellular processes including the DNA damage response, alteration of chromatin structure and Wnt signalling. Despite decades of research, the principles and mechanisms underlying all steps of PAR removal remain actively studied. In this work, we synthesise well-defined PAR branch point molecules and demonstrate that PARG, but not ARH3, can resolve this distinct PAR architecture. Structural analysis of ARH3 in complex with dimeric ADP-ribose as well as an ADP-ribosylated peptide reveal the molecular basis for the hydrolysis of linear and terminal ADP-ribose linkages. We find that ARH3-dependent hydrolysis requires both rearrangement of a catalytic glutamate and induction of an unusual, square-pyramidal magnesium coordination geometry. Bio-organic Synthesi

    Label-free electrochemical monitoring of DNA ligase activity

    Get PDF
    This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase

    Four of a Kind: A Complete Collection of ADP-Ribosylated Histidine Isosteres Using Cu(I)- and Ru(II)-Catalyzed Click Chemistry

    Get PDF
    This is the final version. Available from American Chemical Society via the DOI in this record. The data underlying this study are available in the published article and its online Supporting Material. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.3c00827.Adenosine diphosphate ribosylation (ADP-ribosylation) is a crucial post-translational modification involved in important regulatory mechanisms of numerous cellular pathways including histone maintenance and DNA damage repair. To study this modification, well-defined ADP-ribosylated peptides, proteins, and close analogues thereof have been invaluable tools. Recently, proteomics studies have revealed histidine residues to be ADP-ribosylated. We describe here the synthesis of a complete set of triazole-isosteres of ADP-ribosylated histidine to serve as probes for ADP-ribosylating biomachinery. By exploiting Cu(I)- and Ru(II)-catalyzed click chemistry between a propargylglycine building block and an α- or β-configured azidoribose, we have successfully assembled the α- and β-configured 1,4- and 1,5-triazoles, mimicking N(τ)- and N(π)-ADP-ribosylated histidine, respectively. The ribosylated building blocks could be incorporated into a peptide sequence using standard solid-phase peptide synthesis and transformed on resin into the ADP-ribosylated fragments to provide a total of four ADP-ribosyl triazole conjugates, which were evaluated for their chemical and enzymatic stability. The 1,5-triazole analogues mimicking the N(π)-substituted histidines proved susceptible to base-induced epimerization and the ADP-ribosyl α-1,5-triazole linkage could be cleaved by the (ADP-ribosyl)hydrolase ARH3.Biotechnology and Biological Sciences Research Council (BBSRC)Wellcome TrustWellcome TrustOvarian Cancer Research Allianc

    4-thioribose analogues of adenosine diphosphate ribose (ADPr) peptides

    Get PDF
    This is the final version. Available from the American Chemical Society via the DOI in this record. Data Availability Statement: The data underlying this study are available in the published article and its Supporting Information.Adenosine diphosphate (ADP) ribosylation is an important post-translational modification (PTM) that plays a role in a wide variety of cellular processes. To study the enzymes responsible for the establishment, recognition, and removal of this PTM, stable analogues are invaluable tools. We describe the design and synthesis of a 4-thioribosyl APRr peptide that has been assembled by solid phase synthesis. The key 4-thioribosyl serine building block was obtained in a stereoselective glycosylation reaction using an alkynylbenzoate 4-thioribosyl donor.Biotechnology and Biological Sciences Research CouncilWellcome TrustWellcome TrustOvarian Cancer Research AllianceNetherlands Organization for Scientific Research (NWO

    A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal

    Molecular basis for the reversible ADP-ribosylation of guanosine bases

    Get PDF
    Modification of nucleic acids by ADP-ribosylation is catalyzed by various ADP-ribosyltransferases, including the DarT enzyme. The latter is part of the bacterial toxin-antitoxin (TA) system DarTG, which was shown to provide control of DNA replication and bacterial growth as well as protection against bacteriophages. Two subfamilies have been identified, DarTG1 and DarTG2, which are distinguished by their associated antitoxins. While DarTG2 catalyzes reversible ADP-ribosylation of thymidine bases employing a macrodomain as antitoxin, the DNA ADP-ribosylation activity of DarTG1 and the biochemical function of its antitoxin, a NADAR domain, are as yet unknown. Using structural and biochemical approaches, we show that DarT1-NADAR is a TA system for reversible ADP-ribosylation of guanosine bases. DarT1 evolved the ability to link ADP-ribose to the guanine amino group, which is specifically hydrolyzed by NADAR. We show that guanine de-ADP-ribosylation is also conserved among eukaryotic and non-DarT-associated NADAR members, indicating a wide distribution of reversible guanine modifications beyond DarTG systems

    Serine ADP-ribosylation in Drosophila provides insights into the evolution of reversible ADP-ribosylation signalling

    Get PDF
    In the mammalian DNA damage response, ADP-ribosylation signalling is of crucial importance to mark sites of DNA damage as well as recruit and regulate repairs factors. Specifically, the PARP1:HPF1 complex recognises damaged DNA and catalyses the formation of serine-linked ADP-ribosylation marks (mono-Ser-ADPr), which are extended into ADP-ribose polymers (poly-Ser-ADPr) by PARP1 alone. Poly-Ser-ADPr is reversed by PARG, while the terminal mono-Ser-ADPr is removed by ARH3. Despite its significance and apparent evolutionary conservation, little is known about ADP-ribosylation signalling in non-mammalian Animalia. The presence of HPF1, but absence of ARH3, in some insect genomes, including Drosophila species, raises questions regarding the existence and reversal of serine-ADP-ribosylation in these species. Here we show by quantitative proteomics that Ser-ADPr is the major form of ADP-ribosylation in the DNA damage response of Drosophila melanogaster and is dependent on the dParp1:dHpf1 complex. Moreover, our structural and biochemical investigations uncover the mechanism of mono-Ser-ADPr removal by Drosophila Parg. Collectively, our data reveal PARP:HPF1-mediated Ser-ADPr as a defining feature of the DDR in Animalia. The striking conservation within this kingdom suggests that organisms that carry only a core set of ADP-ribosyl metabolising enzymes, such as Drosophila, are valuable model organisms to study the physiological role of Ser-ADPr signalling
    • …
    corecore